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Abstract

We apply heavy-quark e�ective theory to separate long- and short-distance

e�ects of heavy quarks in lattice gauge theory. In this approach, the inverse

heavy-quark mass and the lattice spacing are treated as short distances, and

their e�ects are lumped into short-distance coeÆcients. We show how to

use this formalism to match lattice gauge theory to continuum QCD, order

by order in the heavy-quark expansion. In this paper, we focus on heavy-

light currents. In particular, we obtain one-loop results for the matching

factors of lattice currents, needed for heavy-quark phenomenology, such as

the calculation of heavy-light decay constants, and heavy-to-light transition

form factors. Results for the Brodsky-Lepage-Mackenzie scale q� are also

given.
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I. INTRODUCTION

A key ingredient in avor physics is the calculation of hadronic matrix elements of the
electroweak Hamiltonian. For example, one would like to calculate, from �rst principles,
quantities such as leptonic decay constants, semi-leptonic form factors, and the amplitudes
for neutral-meson mixing. Numerical calculations with lattice QCD o�er a way to obtain
these quantities, eventually with well-controlled estimates of the numerical uncertainties [1].

The properties of B and D mesons are especially interesting, but the relatively large b
and c quark masses make it diÆcult, with today's computers, to carry out lattice calculations
in the limit mQa ! 0 for which lattice QCD was �rst developed. (Here mQ is the b or c
quark mass, and a is the lattice spacing.) One can, however, use the simplifying features
of the heavy-quark limit of QCD to make lattice calculations tractable. As mQ is increased
far above the typical scale of the wave function, �QCD, the hadrons' wave functions depend
less and less on mQ. As mQ !1 the wave functions become avor and spin symmetric [2].
For quarkonia similar simpli�cations occur, including spin symmetry [3].

In this paper we construct vector and axial vector currents with one quark heavy and the
other light. These currents are needed to obtain the decay constants of heavy-light mesons,
and the form factors for decays of the form H ! Ll�l, where H is a charmed or b-avored
hadron (e.g., B,D; �b, �c), decaying to a light hadron L (e.g., �,K, �; p, etc.) and a lepton l
and its neutrino �l. In particular, we provide a way to treat radiative and power corrections
consistently. This paper is a sequel to Ref. [4], which focussed on power corrections. Here we
discuss the case of heavy-light bilinears in detail, and we compute explicitly the matching
factors for the currents introduced in the \Fermilab" formalism [5]. Heavy-heavy bilinears
are considered in a companion paper [6].

To interpret lattice calculations when mQa� 1, it is convenient to describe cuto� e�ects
with the Symanzik local e�ective Lagrangian (LEL) and expand the LEL's short-distance
coeÆcients in powers of mQa [7{10]. When mQa 6� 1, however, one should realize that it is
not lattice gauge theory that breaks down but rather the Symanzik description, especially its
expansion in mQa. If mQa is large because mQ � �QCD, then the simplifying features of the
heavy-quark limit provide an alternative. Instead of matching lattice gauge theory directly to
continuum QCD, one can match to the heavy-quark e�ective theory (HQET) or, for quarko-
nia, to non-relativistic QCD (NRQCD). In this approach, the inverse heavy-quark mass and
the lattice spacing are both treated as short distances, and a simple picture arises, in which
heavy-quark discretization e�ects are lumped into short-distance coeÆcients. Heavy-quark
cuto� e�ects are systematically reducible, by adjusting the heavy-quark expansion for lattice
gauge theory to agree term-by-term with continuum QCD.

Such application of HQET to lattice QCD was started in Ref. [4], building on Ref. [5].
In this paper we extend the formalism to heavy-light currents. We use the heavy-quark
expansion, as generated by HQET, to derive matching conditions, which are valid for all
mQa and to all orders in the gauge coupling. Our derivation is explicit for dimension-four
currents, which is the next-to-leading dimension, but generalization to higher-dimension
operators should be clear.

We also present explicit results for the one-loop radiative corrections to the normalization
of the current. These calculations show that the temporal and spatial components of the cur-
rent do not have the same radiative corrections. This feature has been found already [11,12],
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and the HQET formalism shows why it arises. In deriving these results we have found a
compact way of arranging the Dirac algebra, which may be useful for calculations with
actions, such as highly improved actions, that are not considered here.

As expected, the coeÆcients have a strong mass dependence. Most of this dependence
can be handled non-perturbatively [13{15]. For equal mass, it is simple to normalize the
temporal vector current, for all masses. One can then form ratios of renormalization factors,
from which the dominant mass dependence drops out. Results for these combinations are
also presented, in Sec. IV.

Our one-loop results extend those of Ref. [12], which considered heavy-light currents
with the Sheikholeslami-Wohlert (SW) action [16] for Wilson fermions [17] and also with
non-relativistic QCD (NRQCD). Results for the Wilson action [17] have been obtained �rst
by Kuramashi [11]. In Refs. [11,12] a term in the currents, the so-called rotation term [18,5],
which is needed for tree-level improvement at order 1=mQ, was omitted. Here we include the
rotation, obtaining the algebraic expression of the Feynman diagrams for the full Fermilab
action. We present numerical results for the Wilson action (without rotation) and the SW
action (with and without rotation). These results are appropriate for recent calculations
of decay constants [19{23], which used the radiative corrections calculated in Refs. [11,12].
Our new results have been used in a recent calculation of the form factors for the decays
B ! �l�l and D ! �l�l [15]. We also have obtained results for the Fermilab action on
anisotropic lattices [24].

Our formalism should be useful for computing matching factors (beyond one-loop) also in
lattice NRQCD [25]. Applied to the static limit [26], it generalizes the formalism of Eichten
and Hill [27]. At one-loop order, similar methods have been developed to calculate the heavy-
light matching coeÆcients for lattice NRQCD [28,29]. As in the Symanzik program [7{9],
the advantage of introducing a continuum e�ective �eld theory is that the formalism pro-
vides a clear de�nition of the matching coeÆcients at every order in perturbation theory
(in the gauge coupling). Indeed, it may also provide a foundation for a non-perturbative
improvement program.

This paper is organized as follows. Section II discusses three ways to separate long and
short distance physics with (continuum) e�ective �eld theories. The �rst is Symanzik's
description of lattice spacing e�ects; we also discuss its breakdown when mQa 6� 1. The
second is the HQET description of heavy quarks, applied to continuum QCD. The third is
the HQET description of heavy quarks on the lattice, which applies when mQ � �QCD, for
all mQa. In particular, we obtain a de�nition of the matching factors for the vector and
axial-vector heavy-light currents. Section II also shows how the HQET matching procedure
is related to the Symanzik procedure in the regime where both apply. Then, the Fermilab
action is reviewed in Sec. III, and in Sec. IV we present one-loop results for the matching
factors. Some concluding remarks are made in Sec. V. Three appendices contain details of
the one-loop calculation, including an outline of a method to obtain compact expressions,
and explicit results for the one-loop Feynman integrands for the renormalization factors with
the full Fermilab action.

Instead of printing tables of the numerical results in Sec. IV, we are making a suite of
programs freely available [30]. This suite includes programs for the heavy-heavy currents
treated in our companion paper [6].
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II. MATCHING TO CONTINUUM FIELD THEORIES

In this section we discuss how to interpret the physical content of lattice �eld theories by
matching to continuum �eld theories. First, the standard Symanzik formalism for describing
cuto� e�ects is reviewed, and we recall how this description breaks down for heavy quarks.
After reviewing the HQET description of (continuum) QCD, we adapt HQET to describe
lattice gauge theory. Comparison of the two then yields a matching procedure that is valid
whenever mQ � �QCD, and for all mQa. In the limit mQa � 1 both the HQET and the
Symanzik descriptions should apply, so we are able to derive relations between the some of
the matching coeÆcients.

A. Symanzik Formalism

The customary way to de�ne matching factors for lattice gauge theory is to apply
Symanzik's formalism. Then the short-distance lattice artifacts are described by a local
e�ective Lagrangian (LEL) and local e�ective operators. For the Lagrangian of any lattice
�eld theory one can write [7,8]

Llat
:
= LSym; (2.1)

where the symbol
:
= can be read \has the same on-shell matrix elements as". The left-hand

side is a lattice �eld theory, and the right-hand side is a continuum �eld theory, whose
ultraviolet behavior is regulated and renormalized completely separately from the lattice of
the left-hand side. The LEL is the Lagrangian of the corresponding continuum �eld theory,
plus extra terms to describe discretization e�ects. For lattice QCD

LSym = LQCD + LI ; (2.2)

where LQCD is the renormalized, continuum QCD Lagrangian. We focus on the quarks, so
for our purposes

LQCD = ��q (=D +mq) q: (2.3)

Lattice artifacts are described by higher-dimension operators,

LI = aK��F �qi���F
��q + � � � ; (2.4)

where a is the lattice spacing and K��F is a short-distance coeÆcient that depends on details
of the lattice action [9]. The lattice artifacts in LI can be treated as a perturbation. In this
way a series can be developed, with matrix elements in the (continuum) eigenstates of LQCD.

Equation (2.2) omits dimension-�ve operators of the form �qR(=D+mq)q or �q(�
 

=D+mq)Rq, for
arbitrary R, which make no contribution to on-shell matrix elements, owing to the equations
of motion implied by Eq. (2.3).

The vector and axial vector currents can be described in a similar way. Consider, for
example, the avor-changing transition s! u. Then one may write [9]
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V �
lat

:
= Z�1V V� � aKV @� �u�

��s+ � � � ; (2.5)

A�
lat

:
= Z�1A A� + aKA@

��ui5s+ � � � ; (2.6)

where

V� � �ui�s; (2.7)

A� � �ui�5s; (2.8)

are the vector and axial vector currents in QCD. Further dimension-four operators are
omitted, because they are linear combinations of those listed and others that vanish by the
equations of motion. Like the terms of dimension �ve and higher in LI , the dimension-four
currents can be treated as perturbations. Matrix elements of ZV V

�
lat and ZAA

�
lat then give

those of continuum QCD, at least in the limit a! 0.
The short-distance coeÆcients|K��F , KJ , and ZJ (J = V , A)|are, in general, functions

of the gauge coupling and the quark masses (in lattice units), and they depend on the
renormalization scheme of the LEL. For mqa � 1 (q = u, d, s), it is consistent and
satisfactory to replace K��F and KJ with their values at mqa = 0, and to replace the ZJ

with the �rst two terms of the Taylor expansion around mqa = 0. For example, with Wilson

fermions [17,16] and conventional bilinears for the lattice currents, one �nds K
[0]
V = K

[0]
A = 0,

and

K
[0]
��F = 1

4
(1� cSW) +O(ma); (2.9)

Z
[0]
V = Z

[0]
A = 1 + 1

2
(mu +ms)a+O(m2a2); (2.10)

where the superscript \[0]" denotes the tree level, and cSW is the clover coupling of the
SW action [16] (cf. Sec. III). Moreover, in the hands of the Alpha Collaboration [9,10],
Eqs. (2.1){(2.6) are the foundation of a non-perturbative procedure for adjusting K��F , KV ,
andKA to be of order aMp, whereMp is a (light) hadronic mass scale, and also for computing
ZV and ZA non-perturbatively (through order Mpa). Then all lattice artifacts in the mass
spectrum, decay constants, and form factors are of order a2.

For a heavy avor Q, however, it is not practical to keep mQa small enough so that this
program straightforwardly applies. Recent work that uses the fully O(a)-improved action
and currents has chosen the heavy-quark massmQa to be as large as 0.7 or so. Thus, (mQa)2

is not small,1 and one should check whether contributions of order (mQa)2 are under control.
Indeed, if one keeps the full mass dependence in the coeÆcients, one �nds that the simple
description of Eqs. (2.2){(2.6) breaks down. The relation between energy and momentum
becomes [5,31]

E2(p) = m2
1 +

m1

m2
p2 +O(p4a2); (2.11)

where, for the Wilson and SW actions,

1Also, the lowest chosen values of mQ are around 1 GeV, which may be too small to be considered

\heavy".
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m
[0]
1 a = ln(1 +m0a); (2.12)
1

m
[0]
2 a

=
2

m0a(2 +m0a)
+

1

1 +m0a
; (2.13)

and m0 is the bare lattice mass. Generalizations valid at every order in perturbation theory
also have been derived [31]. In a similar vein, the spatial and temporal components of
the currents no longer take the same matching coeÆcients, as shown by explicit one-loop
calculations [11,12].

The energy-momentum relation in Eq. (2.11) is obtained for pa � 1 but mQa 6� 1. It
can be described by modifying the standard LEL to

Llat
:
= ��q

 
4D4 +

s
m1

m2
 �D +m1

!
q + L0I ; (2.14)

that is, temporal and spatial directions must be treated asymmetrically in the dimension-
four Lagrangian, and also in the higher-dimension terms L0I . From the tree-level formulas,
Eqs. (2.12) and (2.13),

m1

m2
= 1� 2

3m
2
1a

2 + 1
2m

3
1a

3 + � � � ; (2.15)

so one sees that the deviation from the standard description is of order (ma)2. (At the one-
loop order [31], and at every order in g2, Eq. (2.15) still has no term linear in ma.) One can
arrive at Eqs. (2.14) and (2.15) also by starting with Eq. (2.2), including higher-dimension
terms, and eliminating 4D3

4 and D
4
4, etc., by applying the equations of motion.

In any case, deviations of m1=m2|and similar ratios|from 1 are present in lattice
calculations. With the Wilson or SW actions 1 � m1=m2, for example, is 10 percent or
greater for m1a > 0:6. Although this numerical estimate is made at the tree level, it is
implausible that radiative corrections or bound-state e�ects could wash the error away. In
summary, the description of Eqs. (2.2){(2.6) is no longer accurate when mQa 6� 1.

There are several possible remedies. One is to do numerical calculations with a so small
that, even for the b quark, mba � 1. Despite the exponential growth in computer power,
this remedy will not be available for many years. Another remedy is to add a parameter
to the lattice action, which can be tuned to set m1 = m2 [5]. An example of this is an
action with two hopping parameters. Then, the continuum description can again take the
form in Eq. (2.2), starting with the continuum LQCD, although it is still useful to describe
the higher-dimension terms asymmetrically. A third remedy is to realize that it is the
description, rather than the underlying lattice gauge theory, that has broken down. Since
lattice gauge theory with Wilson fermions has a well-behaved heavy-quark limit [5], it is
possible to use heavy-quark e�ective theory (HQET) or NRQCD to describe short-distance
e�ects, including the lattice artifacts of the heavy quark [4]. This last remedy is explained
in detail in Sec. II C, where we show also how all three strategies are connected.

B. HQET description of QCD

The breakdown of the standard Symanzik description of cuto� e�ects for Wilson fermions
arises because the kinematics of heavy hadron decays single out a vector, namely, the heavy
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hadron velocity. But, since the heavy-quark mass is also much larger than the spatial
momenta of the problem, the dynamics simplify. In continuum QCD, this has led to the
development of the e�ective �eld theories HQET [26,27,34{36] and NRQCD [3,25]. These
two e�ective theories are useful for generating an expansion in p=mQ. They share a common
e�ective Lagrangian, but the power in p=mQ assigned to any given operator is not necessarily
the same. In HQET the power can be deduced immediately from the dimension, whereas in
NRQCD it is deduced by counting powers of the relative velocity of the �QQ system. The
discussion in this paper will follow the counting of HQET, but the logic could be repeated
with the counting of NRQCD.

Our aim is to show, for the case of heavy-light currents, how to use HQET to extend the
standard Symanzik program into the region where mQa is no longer small. This program
was started in Ref. [4], building on Ref. [5]. The formalism holds for all mQa, but, like the
usual HQET, it requires

mQ � p; �QCD: (2.16)

First, in this subsection, we recall the HQET description of continuum QCD, paralleling the
discussion in Sec. IIA. Then, in Sec. II C, we explain what changes are needed to describe
the cuto� e�ects of lattice NRQCD and of lattice gauge theory with Wilson fermions.

The HQET conventions are the same as those given Sec. III of Ref. [4]. The velocity
needed to construct HQET is v. The fourth Euclidean component v4 = iv0, so in the rest
frame v = (i;0). The metric is taken to be diag(�1; 1; 1; 1), with the upper (lower) sign for
Euclidean (Minkowski) spacetime. In either case, v2 = �1. The heavy quark �eld is called
hv, and it satis�es the constraint 1

2(1 � i=v)hv = hv, or

=vhv = ihv; �hv =v = i�hv: (2.17)

Physically Eq. (2.17) means that hv describes only quarks, but not anti-quarks. The tensor
��� = Æ�� + v�v� projects onto components orthogonal to v. For a vector p, the component
orthogonal to v is p�? = ��� p

� = p� + v�(v � p); in the rest frame, these are the spatial
components.

HQET describes the dynamics of heavy-light bound states with an e�ective Lagrangian
built from hv. So, for these states, one can say

LQCD
:
= LHQET; (2.18)

where

LHQET = L(0) + L(1) + L(2) + � � � : (2.19)

For HQET L(s) contains terms of dimension 4 + s. Note that the ultraviolet regulator
and renormalization scheme of the two sides of Eq. (2.18) need not be the same, although
dimensional regularization and the MS scheme are usually used for both.

For this paper it is enough to consider the �rst two terms, L(0) and L(1). The leading,
dimension-four term is

L(0) = �hv(iv �D �m)hv: (2.20)
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The choice of v is somewhat arbitrary. If v is close to the heavy quark's velocity,2 then L(0)

is a good starting point for the heavy-quark expansion, which treats the higher-dimension
operators as small. The most practical choice is the containing hadron's velocity.

The mass term in L(0) is often omitted. By heavy-quark symmetry, it has an e�ect
neither on bound-state wave functions nor, consequently, on matrix elements. It does a�ect
the mass spectrum, but only additively. Including the mass obscures the heavy-quark avor
symmetry, but only slightly [4]. When the mass term is included, higher-dimension operators
are constructed with D� = D� � imv� [32]. To describe on-shell matrix elements one
may omit operators that vanish by the equation of motion, �iv � Dhv = 0, derived from
Eq. (2.20). In practice, therefore, higher-dimension operators are constructed fromD�

? = D�
?

and [D�;D� ] = [D�;D� ] = F ��.
The dimension-�ve interactions are

L(1) = C2O2 + CBOB; (2.21)

where C2 and CB are short-distance coeÆcients, and
O2 = �hvD

2
?hv; (2.22)

OB = �hvs��B
��hv; (2.23)

with s�� = �i���=2 and B�� = ����
�
�F

��.
In Eq. (2.20) one should think of the quark mass m as a short-distance coeÆcient. By

reparametrization invariance [37], the same mass appears in the denominator of the kinetic
energy C2O2, namely,

C2 = 1

2m
: (2.24)

If operator insertions in HQET are renormalized with a minimal subtraction in dimensional
regularization, then m is the (perturbative) pole mass. With other ultraviolet regulators, the
operator and the mass m could become �-dependent. Even in mass-independent schemes,
the chromomagnetic operator OB depends on the renormalization point � of the HQET, and
that dependence is canceled by

CB(�) = zB(�)

2m
; (2.25)

with 2m appearing so that zB is unity at the tree level.
The description of electroweak avor-changing operators proceeds along the same lines.

The avor-changing vector current for a b ! q transition, de�ned to be V� = �qi�b as in
Eq. (2.7), is described in HQET by

V� :
= CVkv

��qhv + CV?�qi
�
?hv �

6X
i=1

BV iQ�
V i + � � � ; (2.26)

2In NRQCD applications the relative velocity between the heavy quark and heavy anti-quark

should not be confused with the velocity v introduced here.
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where hv is the HQET �eld, which satis�es Eq. (2.19) and whose dynamics are given
by LHQET. The dimension-four operators are

Q�
V 1 = �v��q=D?hv; (2.27)

Q�
V 2 = �qi�?=D?hv; (2.28)

Q�
V 3 = �qiD�

?hv; (2.29)

Q�
V 4 = +v��q =

 
D?hv; (2.30)

Q�
V 5 = �q=

 
D?i

�
?hv; (2.31)

Q�
V 6 = �qi

 
D�
?hv: (2.32)

Further dimension-four operators are again omitted, because they are linear combinations of

those listed and others that vanish by the equations of motion. For example, �q(iv � D)v�hv =
�q(=
 
D? � =

 
D)v�hv = Q�

V 4 �mqv
��qhv, where the Dirac equation is used for the last step.

The axial vector current A� = �qi�5b has a completely analogous description,

A� :
= CA? �qi

�
?5hv � CAkv

��q5hv �
6X

i=1

BAiQ�
Ai + � � � ; (2.33)

where each operator Q�
Ai is obtained from Q�

V i by replacing �q with ��q5.
The short-distance coeÆcients of HQET depend on the heavy-quark mass m, as well as

�=m and mq=m, where � is the the renormalization scale and mq is the light quark mass.
They are not explicitly needed in this paper, but it may be instructive to give the coeÆcients
of the dimension-three terms through one-loop order, with mq = 0 (J = V , A) [27]:

CJk = 1 +
g2CF

16�2

�
h ln(m

2=�2)� 2
�
; (2.34)

CJ? = 1 +
g2CF

16�2

�
h ln(m

2=�2)� 4
�
; (2.35)

where the anomalous dimension h = 3=2. The �-independent part of CAk and CA? given
here assumes that the axial current is renormalized in a chirally symmetric way [38]. The
coeÆcients of the dimension-four currents are

B
[0]
Ji =

1

2m
; i � 2; (2.36)

B
[0]
Ji = 0; i � 3; (2.37)

at the tree level, but all BJi become non-trivial when radiative corrections are included.

C. HQET description of lattice gauge theory

HQET provides a systematic way to separate the short distance 1=m from the scale �QCD

in heavy-light matrix elements, as long as the condition (2.16) holds. The formalism can also
be applied to lattice gauge theory, again as long as condition (2.16) holds (and pa � 1).

9



When lattice NRQCD is used for heavy-light systems, this is because LHQET is just the
Symanzik LEL for lattice NRQCD. When Wilson fermions are used for heavy quarks, one
may also apply HQET, because they have the same particle content and heavy-quark sym-
metries [4]. In both cases bilinears of lattice fermions �elds are introduced to approximate
the continuum QCD currents. One �eld corresponds to the light quark, and the other to
the heavy quark. An explicit construction, through order 1=m, is in Ref. [29] for lattice
NRQCD, and a similar construction for Wilson fermions is in Sec. III. Lattice artifacts
stemming from the light quark can be described as in Sec. IIA, but lattice artifacts of the
heavy quark should be lumped into the HQET short-distance coeÆcients. Some of the oper-
ators needed to describe heavy-quark discretization e�ects do not appear in the usual HQET
description of continuumQCD. For example, the dimension-seven operator

P
i
�hvD4

i hv (writ-
ten here in the rest frame) appears in L(3) to describe the breaking of rotational invariance
on the lattice. Similarly, at and beyond dimension �ve there are HQET current operators
to describe violations of rotational symmetry in the lattice currents. Because of the high
dimension, these e�ects lie beyond the scope of this paper, which concentrates on operators
of leading and next-to-leading dimension.

In this way, the preceding description of continuum QCD can be repeated for lattice
gauge theory with the same logic and structure. Instead of Eq. (2.1), one introduces a
relation like Eq. (2.18),

Llat
:
= LHQET; (2.38)

where Llat is a lattice Lagrangian for NRQCD or Wilson quarks, and LHQET is an HQET
Lagrangian with the same operators as in Eqs. (2.20) and (2.21), but modi�ed coeÆcients.
In the dimension-four HQET Lagrangian L(0), one must now replacem with the heavy quark
rest massm1. The other coeÆcients will be denoted Clati . In particular, in L(1) the coeÆcient
of the kinetic energy becomes

Clat2 =
1

2m2
: (2.39)

If operator insertions of O2 continue to be de�ned by dimensional regularization with mini-
mal subtraction, then both the rest mass m1 and the kinetic mass m2 generalize the pertur-
bative pole mass. Like the usual pole mass, they are properties of the pole in the perturbative
quark propagator [31], and they are infrared �nite and gauge independent [39]. The lattice
breaks Lorentz (or Euclidean) invariance, so reparametrization invariance no longer requires
m2 to be the same as m1.

Similarly, a heavy-light lattice (axial) vector current V �
lat (A

�
lat) can be described by

V �
lat

:
= C lat

Vk
v��qhv + C lat

V?
�qi�?hv �

6X
i=1

Blat
V iQ�

V i + � � � ; (2.40)

A�
lat

:
= C lat

A?
�qi�?5hv � C lat

Ak
v��q5hv �

6X
i=1

Blat
AiQ�

Ai + � � � ; (2.41)

but there are two important changes from Eq. (2.26). First, the light quarks (and gluons)
are now also on the lattice, so they are described by their usual Symanzik LELs. Second, the
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short-distance coeÆcients of HQET are modi�ed, because the lattice modi�es the dynamics
at short distances. The coeÆcients C lat

Jk
, C lat

J?
, and B lat

Ji now depend on the lattice spacing a,

i.e., on ma, in addition to m, �=m, and mq=m. A heavy-light lattice axial vector current
has an analogous description.

On the other hand, in Eqs. (2.26) and (2.40) the HQET operators are the same. As a
rule, the ultraviolet regulator of an e�ective theory does not have to be the same as that of
the underlying theory. (The standard Symanzik program works this way.) Thus, when de-
scribing lattice gauge theory one is free to regulate HQET just as one would when describing
continuum QCD. Moreover, since Eqs. (2.27){(2.32) give a complete set of dimension-four
HQET currents, the coeÆcients C lat

Jk;J?
and Blat

Ji contain short-distance e�ects from both the

light and the heavy sectors.
By comparing the HQET descriptions of lattice and continuum QCD, one can see how

lattice matrix elements di�er from their continuum counterparts. The continuum matrix
element of v � V, for example, is

hLjv � VjBi = �CVkhLj�qhvjB(0)
v i �BV 1hLjv � QV 1jB(0)

v i �BV 4hLjv � QV 4jB(0)
v i

� C2CVk

Z
d4xhLjT O2(x)�qhvjB(0)

v i? � CBCVk

Z
d4xhLjT OB(x)�qhvjB(0)

v i?

+ O(�2=m2); (2.42)

where L is any light hadronic state, including the vacuum. (The ?-ed T product is de�ned
in Ref. [4]; this detail is unimportant here.) On the left-hand side B denotes a b-avored
hadron, and on the right-hand side B(0)

v denotes the corresponding eigenstate of the leading
e�ective Lagrangian L(0). Similarly, the lattice matrix element is [4]

hLjv � VlatjBi = �C lat
Vk
hLj�qhvjB(0)

v i �Blat
V 1hLjv � QV 1jB(0)

v i �B lat
V 4hLjv � QV 4jB(0)

v i
� Clat2 C lat

Vk

Z
d4xhLjT O2(x)�qhvjB(0)

v i? � ClatB C lat
Vk

Z
d4xhLjT OB(x)�qhvjB(0)

v i?

� K��FC
lat
Vk

Z
d4xhLjT �qi�Fq(x)�qhvjB(0)

v i? +O(�2a2b(ma)): (2.43)

Compared to Eq. (2.42), the short-distance coeÆcients are modi�ed to depend on ma, there
is an extra term from the Symanzik LEL of the light quark, and the next power corrections
can, in general, be multiplied by a (bounded) function of ma. The matrix elements on the
right-hand sides are, however, identical, because in both cases they are de�ned with L(0)

describing the heavy quark and LQCD describing the light quark (and gluons).
Similar equations hold for matrix elements of V? and V?lat, and for the axial vector

current. If one multiplies the equations for the lattice matrix elements with

ZJk =
CJk

C lat
Jk

; (2.44)

ZJ? =
CJ?

C lat
J?

; (2.45)

and subtracts the result from the continuum equations, one �nds that the di�erence can be
traced solely to the mismatch of the short-distance coeÆcients, or
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ÆCi = C lati � Ci; (2.46)

ÆBJi = ZJiB
lat
Ji �BJi; (2.47)

where the normalization factors ZJi are ZJk for i = 1, 4, and ZJ? for i = 2, 3, 5, 6. In
Eqs. (2.46) and (2.47) a picture emerges, where heavy-quark lattice artifacts are isolated

into ÆCi and ÆBJi. Furthermore, the analysis presented here makes no explicit reference
to any method for computing the short-distance coeÆcients, so it applies at every order in
perturbation theory (in g2) and, presumably, at a non-perturbative level as well.

The matching factors ZJk and ZJ? play the following role, sketched in Fig. 1. In each
case, the denominator converts a lattice-regulated scheme to a renormalized HQET scheme,
and the numerator converts the latter to a renormalized (continuum) QCD scheme. As long
as the same HQET scheme is used, HQET drops out of the calculation of ZJk and ZJ? .
Moreover, changes in continuum renormalization conventions modify only the numerator,
and changes in the lattice action or currents modify only the denominator. In a similar way,
dependence on the HQET renormalization scheme drops out when computing ÆCi and ÆBJi.

One can derive a connection between the matching coeÆcients of the HQET and the
Symanzik descriptions when ma � 1 and m � p, so that both formalisms apply. With
the Lagrangian, one applies HQET to Eqs. (2.2){(2.4) and identi�es the short-distance
coeÆcients with m1, Clat2 , and ClatB . Then one �nds,

m1b = mb +O(a2); (2.48)

m2b = mb +O(a2); (2.49)

zlatB = zB � 4mbaK��FC��F ; (2.50)

where the short-distance coeÆcient C��F appears in the relation

�bi���F��b
:
= �2C��FOB: (2.51)

At the tree level, C
[0]
��F = 1. For the [axial] vector current, one inserts Eq. (2.26) [Eq. (2.33)]

into Eq. (2.5) [Eq. (2.6)], neglects terms of order m2a2, and compares with Eq. (2.40)
[Eq. (2.40)]. One also must match the tensor and pseudoscalar bilinears to HQET at the
dimension-three level,

�qi���b
:
= CT+�

�
��

�
��qi�

��hv � CT��q(v
�i�? � v�i�?)hv; (2.52)

�qi5b
:
= CP �qi5hv; (2.53)

lattice

?

H
H

H
H
H
H
HY

HQET
�
�

�
�
�
�
��QCD

C=C lat

C lat

C

FIG. 1. Diagram illustrating how the matching factors Clat, C, and Z = C=Clat match lattice

gauge theory and QCD to HQET, and to each other.
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with short-distance coeÆcients CT� and CP . At the tree level, C [0]
T�

= C
[0]
P = 1. After

carrying out these steps, one �nds that

ZVk = ZV ; (2.54)

Z�1V?
= Z�1V + (mq +mb)aKVCT�=CV?; (2.55)

ZVkB
lat
V 1 = BV 1 + aZVKVCT�; (2.56)

ZVkB
lat
V i = BV i + aZVKVCT+; i = 2; 6; (2.57)

ZVkB
lat
V 3 = BV 3 � aZVKVCT+; (2.58)

ZVkB
lat
V 4 = BV 4 � aZVKVCT�; (2.59)

ZVkB
lat
V 5 = BV 5 � aZVKV (CT+ � CT�) (2.60)

from matching the vector current, and

ZA? = ZA; (2.61)

Z�1Ak
= Z�1A + (mq +mb)aKACP=CAk ; (2.62)

ZA?B
lat
Ai = BAi +O(a2); i = 1; 2; 5; (2.63)

ZA?B
lat
Ai = BAi + aZAKACP ; i = 3; 6; (2.64)

ZA?B
lat
A4 = BA4 � aZAKACP (2.65)

from matching the axial vector current. Of course, these relations hold only when describing
the same lattice currents V �

lat and A�
lat, and then only to order a2. Considering similar

relations for the whole tower of higher-dimension operators, one sees

lim
a!0

C latO = CO; (2.66)

lim
a!0

ZJiB
lat
Ji = BJi: (2.67)

Eqs. (2.55){(2.60) and (2.62){(2.65) illustrate for the next-to-leading dimension operators
how the limit is accelerated for standard O(a) improvement, with K��F , KV , and KA them-
selves of order a.

Equations (2.54){(2.65) show that HQET matching connects smoothly to Symanzik
matching in the limit where both apply. HQET matching is, therefore, a natural and
attractive extension into the more practical region where ma is not very small. Continuum
QCD still can be approximated well, but now order by order in the heavy-quark expansion.

The remainder of this paper pursues this program in perturbation theory. One-loop
corrections to the rest mass m1 and the kinetic mass m2 have been considered already in
Ref. [31]. The one-loop correction to CB would require a generalization of the calculation
of K��F [33] to incorporate the full mass dependence of the quark-gluon vertex. In this
paper we focus on heavy-light currents. We construct lattice currents suitable for matching
through order 1=mQ in the heavy quark expansion. We then calculate the matching factors
ZJk and ZJ? at the one-loop level, which are needed to �x the overall normalization of the
heavy-light currents. Currents suitable for heavy-to-heavy transitions b! c are considered
in a companion paper [6].
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III. LATTICE ACTION AND CURRENTS

In this section our aim is to de�ne heavy-light currents with Wilson fermions that are
suited to the HQET matching formalism. Because Wilson fermions have the right particle
content and obey the heavy-quark symmetries, the descriptive part of the formalism applies
in any case. To use HQET to match lattice gauge theory to continuum QCD, however, we
would like to ensure that ÆCi and ÆBJi [cf. Eqs. (2.46) and (2.47)] remain bounded in the
in�nite-mass limit. Good behavior is attained by mimicking the structure of Eqs. (2.27){
(2.32), so that improvement terms are guaranteed to remain small. Then we would like to
adjust free parameters in the currents so that ÆCi and ÆBJi (approximately) vanish. We
show how to do so in perturbation theory, obtaining Blat

Ji at the tree level and, in Sec. IV,
the matching factors ZJk and ZJ? at the one-loop level.

A suitable lattice Lagrangian was introduced in Ref. [5]. It is convenient to write the
lattice Lagrangian Llat = L0 + LB + LE. The �rst term is

L0 = �(m0 +m0cr) � (x) (x)� 1
2
� (x)

h
(1 + 4)D

�
4 lat � (1� 4)D

+
4 lat

i
 (x) (3.1)

� � � (x) �Dlat (x) +
1
2rs�a

� (x)4(3)
lat (x):

The mass counterterm m0cr is included here so that, by de�nition, m0 = 0 for massless
quarks. The covariant di�erence operators D�4 lat, Dlat, and 4(3)

lat, are de�ned in Ref. [5].
They carry the label \lat" to distinguish them from the continuum covariant derivatives in
Secs. IIA and IIB. The symbol  is reserved in this paper for lattice fermion �elds. The
temporal kinetic term is conventionally normalized, but the spatial kinetic term is multiplied
with the coupling �. The coupling rs is, in the technical sense, redundant [5], but is included
to solve the doubling problem [17].

For L0 the tree-level relations between its couplings and the coeÆcients in the LHQET

are well known. By matching the kinetic energy, one �nds (for v = 0)

Clat2

[0]
=

1

2m[0]
2 a

=
�2

m0a(2 +m0a)
+

rs�

2(1 +m0a)
: (3.2)

At higher orders in perturbation theory, C2 remains (for v = 0) the kinetic mass of the
quark, which is expressed in terms of the self energy in Ref. [31].

L0 has cuto� artifacts, which are described by dimension-�ve and -higher operators in
LSym (if mqa� 1) or LHQET (if mQ � �QCD). The dimension-�ve e�ect can be reduced by
adding

LB = i
2
acB� � (x)� �Blat(x) (x); (3.3)

LE = 1
2acE�

� (x)� �Elat(x) (x); (3.4)

and suitably adjusting of cB and cE. The lattice chromomagnetic and chromoelectric �elds,
Blat and Elat, are those given in Ref. [5].

By matching the gluon-quark vertex, one �nds

ClatB
[0]
=

1

2m[0]
B a

=
�2

m0a(2 +m0a)
+

cB�

2(1 +m0a)
: (3.5)
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Higher-order corrections to ClatB have not been obtained. By comparing Eqs. (3.2) and (3.5)
one sees, however, that cB = rs + O(g2) is needed to adjust ClatB to its continuum counter-
part CB = zB=2m2.

The Euclidean action is S = �a4Px L(x). Special cases are the Wilson action [17],
which sets rs = � = 1, cB = cE = 0; and the Sheikholeslami-Wohlert action [16], which
sets rs = � = 1, cB = cE � cSW. But to remove lattice artifacts for arbitrary masses, the
couplings rs, �, cB and cE must be taken to depend on m0a [5]. Our analytical results for
the integrands of Feynman diagrams, given in Appendix B, are for arbitrary choices of these
couplings. Indeed, our expressions allow the heavy and light quarks to have di�erent values
of all couplings.

Heavy-light currents are de�ned in an essentially similar way. For convenience, �rst
de�ne a \rotated" �eld [18,5]

	q = [1 + ad1 �Dlat] q; (3.6)

where  q is the �eld in L0 of avor q, and Dlat is again the symmetric covariant di�erence
operator. Simple bilinears with the right quantum numbers are

V �
0 = �	qi

�	b; (3.7)

A�
0 = �	qi

�5	b: (3.8)

The subscript \0" implies that, as with L0, some improvement is desired. To ensure a
good large-ma limit, one should pattern the improved current after the right-hand side of
Eq. (2.40). Thus, we take

V �
lat = V �

0 �
6X
i=1

bV iQ
�
V i; (3.9)

A�
lat = A�

0 �
6X

i=1

bAiQ
�
Ai; (3.10)

where the bJi are adjustable, and the dimension-four lattice operators are

Q�
V 1 = �v� � qi=v=D? lat b; (3.11)

Q�
V 2 = � qi

�
?=D? lat b; (3.12)

Q�
V 3 = � qiD

�
?lat b; (3.13)

Q�
V 4 = �v� � q =

 
D?lati=v b; (3.14)

Q�
V 5 =

� q =
 
D?lati

�
? b; (3.15)

Q�
V 6 =

� qi
 
D�
?lat b; (3.16)

and each lattice operator Q�
Ai is obtained from Q�

V i by replacing � q with � � q5. Lattice
quark �elds do not satisfy Eq. (2.17), so =v appears explicitly. In practice, one uses the rest
frame here, v = (i;0), as in Eq. (3.6). An analogous construction for lattice NRQCD has
been given by Morningstar and Shigemitsu [29].

It is worthwhile to emphasize the di�erence between Eqs. (2.40) and (3.9). Equa-
tion (2.40) is a general HQET description of any heavy-light lattice current. Equation (3.9) is
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a de�nition of a speci�c lattice current, namely the one used in this paper (and in calculations
of fB and other hadronic matrix elements). In the same vein, the QJi in Eqs. (2.27){(2.32)
are HQET operators, whereas the QJi in Eqs. (3.11){(3.16) are lattice operators. Finally,
the coeÆcients Blat

Ji are the output of a matching calculation: they depend on the bJi, which
must be adjusted to make ÆBJi vanish.

To illustrate, let us consider the calculation of the coeÆcients Blat
Ji at the tree level. One

computes on-shell matrix elements such as hqjJlatjbi and h0jJlatj�qbi in lattice gauge theory
and compares them to the corresponding matrix elements in HQET. Then one �nds

C lat
Jk

[0]
= C lat

J?

[0]
= e�(m

[0]
1q+m

[0]
1b )a=2; (3.17)

Blat
Ji

[0]
= e�(m

[0]
1q+m

[0]
1b )a=2

 
1

2m
[0]
3

+ b
[0]
Ji

!
; i � 2 (3.18)

Blat
Ji

[0]
= e�(m

[0]
1q+m

[0]
1b )a=2b

[0]
Ji ; i � 3 (3.19)

where

m
[0]
1 a = ln(1 +m0a) (3.20)

and, for our lattice Lagrangian and currents,

1

2m[0]
3 a

=
�(1 +m0a)

m0a(2 +m0a)
� d1: (3.21)

Since (continuum QCD's) C
[0]
J = 1 there already is a non-trivial matching factor at the tree

level relating the lattice and continuum currents, Z
[0]
Jk

= Z
[0]
J?

= e(m1q+m1b)a=2.

After comparing Eqs. (3.18){(3.19) with Eqs. (2.36){(2.37), one sees that one can take

b
[0]
Ji = 0 for all six operators, if d1 is adjusted correctly. At the tree level, the way to adjust

d1 is to set m
[0]
3 equal to the (tree-level) heavy-quark mass. In the e�ective Lagrangian

there are two quark masses, the rest mass m1 and the kinetic mass m2. The former has no
e�ect on matrix elements (and a trivial, additive e�ect on the mass spectrum). As discussed
above, heavy-quark cuto� e�ects in matrix elements are reduced if Clat2 = C2, which means
one should identify the continuum quark mass with the kinetic mass. Thus, one should set
m

[0]
3 = m

[0]
2 , which is obtained if one adjusts

d1 =
�(1 +m0a� �)

m0a(2 +m0a)
� rs�

2(1 +m0a)
: (3.22)

The same rotation also improves heavy-heavy currents at the tree level.
Beyond the tree level, it is convenient to de�ne d1 for the spatial component of the

degenerate-mass, heavy-heavy current [6]. Then the corrections heavy-heavy current analo-
gous to QV 2 and QV 5 would be superuous, but for unequal masses they are still required.

For equal mass currents it is possible to compute ZVk nonperturbatively for all massesmb.
One may therefore prefer to write [13{15]

ZJub
k;?

=
q
ZV uu

k
ZV bb

k
�Jub
k;?

(3.23)
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and compute only the factor �Jub
k;?

in perturbation theory. To calculate the pre-factor ZV bb
k

appearing in Eq. (3.23), one must have a massive quark in the �nal state. The de�nition of
the heavy-heavymatching factor is given in our companion paper [6], along with a calculation
of its one-loop level contribution. We give the results for heavy-light �Jk;? in Sec. IV.

For a light quark, with mqa � 1, the right hand side of Eq. (3.22) vanishes linearly
in m0a. Therefore, 1 � m3q=m2q is O(m2

qa
2), and the distinction between m3q and m2q is

negligible. For this reason, and to simplify calculation, we set mq = 0. Then Eq. (3.22)
implies d1 = 0 for the light quark.

IV. ONE-LOOP RESULTS

In this section we present results for the matching factors at the one-loop level in pertur-
bation theory. The one-loop contributions are known for the Wilson [11] and Sheikholeslami-
Wohlert (SW) actions [12]. Both these works omit the rotation term in the current [18,5],
which is needed to obtain 1=m3 correctly. In this section we complete the work started in
Ref. [12] and report results with the clover term and with the rotation. For comparison we
also present our results without the rotation, both with and without the clover term.

The computer code for generating these results is freely available [30].
The matching factors ZJ (J = Vk, V?, Ak, and A?) are simply the ratios of the lattice

and continuum radiative corrections:

ZJ =

h
Z
1=2
2h �JZ

1=2
2l

icont
h
Z
1=2
2h �JZ

1=2
2l

ilat ; (4.1)

where Z2h and Z2l are wave-function renormalization factors of the heavy and light quarks,
and the vertex function �J is the sum of one-particle irreducible three-point diagrams, in
which one point comes from the current J and the other two from the external quark states.

The expression relating Z2 to the lattice self energy, for all masses and gauge couplings,
can be found in Ref. [31]. Its dominant mass dependence is

Z2 / e�m1a; (4.2)

where m1 is the all-orders rest mass (of the heavy quark). This mass dependence is not
present in the vertex function or the continuum part of Eq. (4.1). Consequently, we write

e�m
[0]
1 a=2ZJ� = 1 +

1X
l=1

g2l0 Z
[l]
J�
; (4.3)

so that the Z [l]
J�

are only mildly mass dependent. (A slightly di�erent convention was used in
presenting results for Z2 in Ref. [31].) By construction, this mass dependence in �J� cancels
out in a gauge-invariant, all orders way. So, we write

�J� = 1 +
1X
l=1

g2l0 �
[l]
J�
: (4.4)
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This rest of this section is split into two subsections. In the �rst, we present our results
for the full mass dependence of Z

[1]
J�

and �
[1]
J�
. In the second, we discuss the related calculation

of the Brodsky-Lepage-Mackenzie scale q�. In both cases, we discuss fully a range of checks
on our calculations.

A. Z
[1]
J and �

[1]
J

The combinations of wave-function and vertex renormalization in ZJ are gauge invari-
ant and ultraviolet and infrared �nite. For vanishing light quark mass there is a collinear
divergence (which can be regulated by an in�nitesimally small mass), but it is common to
lattice and continuum functions. In the desired ratio (4.1), the divergence cancels, and the
result is independent of the scheme for regulating the collinear singularity. For large ma a
remnant of this cancellation appears. The lattice theory approaches its static limit, where
its ultraviolet behavior is non-logarithmic. But the region of momentum a�1 < q < m in
the continuum diagrams generates logarithms. At the one-loop level one must �nd 3 ln(ma),
with the same anomalous dimension as in Eqs. (2.34) and (2.35). At higher loops the usual
polynomial in ln(ma) will arise.

We have calculated the one-loop Feynman diagrams for the action speci�ed in Eqs. (3.1){
(3.4), with arbitrary m0, rs, �, cB, and cE for the incoming heavy quark, m00 = 0, r0s,
� 0, c0B, and c0E for the outgoing light quark. The needed Feynman rules are in Ref. [31],
apart from three new rules for the current itself, which are in Appendix A. As shown in
Appendix B, we have found a simple way to incorporate the rotation into the Dirac algebra.
The resulting analytical expressions are surprisingly compact, and they are given explicitly
in Appendices B and C.

We have evaluated these expressions for rs = � = 1 and cE = cB � cSW. Thus, the
numerical results correspond to the SW action (cSW = 1) and to the Wilson action (cSW = 0).
Figure 2 plots the full mass dependence of the matching factors for the vector current,
(a) ZVk, (b) ZV?, (c) �Vk, and (d) �V?. These numerical results are for the SW action with
rotation (solid lines) and also for the SW and Wilson actions without the rotation (dotted
lines). Figure 3 plots the full mass dependence of the matching factors for the axial vector
current, (a) ZAk , (b) ZA? , (c) �Ak, and (d) �A? . These and the following �gures are plotted

against m[0]
1 a because this variable conveniently covers the whole mass range: for small mass

m1 � m2, and for large mass m1a � lnm2a.
We have carried out several checks on our calculations. In each case, identical numerical

results have been obtained with two or more completely independent programs. The results
for ZJk;? agree with those previously obtained, for cSW = 0 [11] and for cSW = 1, d1 = 0 [12].
We have also reproduced limiting cases, as we briey discuss below.

Forma = 0 our calculation reduces to the usual matching calculation for massless quarks.
We �nd (with CF = 4=3)

Z
[1]
Vk

= Z
[1]
V?

=

( �0:129423(6); cSW = 1;
�0:174073(7); cSW = 0;

(4.5)

Z
[1]
Ak

= Z
[1]
A?

=

( �0:116450(5); cSW = 1;
�0:133365(5); cSW = 0;

(4.6)
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FIG. 2. Full mass dependence of the one-loop coeÆcients of the matching factors of the vector

current (a) Z
[1]
Vk
, (b) Z

[1]
V?
, (c) �

[1]
Vk
, and (d) �

[1]
V?
. Filled (open) symbols denote the SW (Wilson)

action; solid (dotted) lines connecting squares (circles) indicate the rotation is included (omitted).

in excellent agreement with previous work for cSW = 1 [40{42] and cSW = 0 [42{44]. (Refer-
ence [42] gives precise results as a polynomial in cSW.)

As the mass tends to in�nity, these actions and currents all lead, up to an unphysical
factor, to the same vertices and quark propagator|a Wilson line. Perturbative corrections
to the vertex functions must respect this universal static limit, and, therefore, they must
tend to a universal value. As ma ! 1, one expects the Z factors for a massive quark to
approach those for the static limit, namely

Z
[1]
J =

CF

16�2

h
h ln(m2a)

2 + z
[1]
J

i
; (4.7)

where the constant z[1]J depends on the current J and on cSW (of the light quark). Since
ln(m2a) � m1a in this region one expects the linear behavior seen in Figs. 2 and 3. The
static limit is also shown in Figs. 2 and 3 with

z
[1]
Vk

=

(
�10:248; cSW = 1;
�7:929; cSW = 0;

(4.8)

z
[1]
A?

=

(
�8:248; cSW = 1;
�5:929; cSW = 0;

(4.9)
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FIG. 3. Full mass dependence of the one-loop coeÆcients of the matching factors of the axial

vector current (a) Z
[1]
Ak
, (b) Z

[1]
A?

, (c) �
[1]
Ak
, and (d) �

[1]
A?

.

z
[1]
V?

=

( �14:414; cSW = 1;
�20:379; cSW = 0;

(4.10)

z
[1]
Ak

=

(
�16:414; cSW = 1;
�22:379; cSW = 0:

(4.11)

We have obtained these constants ourselves. They agree with previous (less precise) results
for cSW = 1 [45] and cSW = 0 [27]. As one can see from looking at Figs. 2 and 3, the static

result is a good approximation for m[0]
1 a > 5 or, equivalently, m0a � m2a > 150.

Some of the points at the highest masses have large error and lie nearly one � o� the
curve. The origin of this behavior is that the lattice and continuum integrals are dominated
by di�erent momenta: the continuum integral is dominated by the region k � m2 � a�1,
whereas the lattice integral is dominated by the region k � a�1. This mass region is not of
much practical interest, since here one has an essentially static quark.

Equations (2.54){(2.65) allow us to check the small (heavy-quark) mass limit against
the work of Sint and Weisz [46]. In our conventions the matching factors ZV and ZA are
functions of gauge coupling and quark mass. Thus,

ZV (mqa;mba) = ZV

h
1 + 1

2(mq +mb)abV
i
; (4.12)

ZA(mqa;mba) = ZA

h
1 + 1

2(mq +mb)abA
i
; (4.13)
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where, on the right-hand side, we adopt the notation of Refs. [9,10,46], and the Zs and bs
do not depend on mass. Here only the mass dependence is displayed; all quantities depend
also on the gauge coupling.

If we omit the rotation, our currents and those considered by Sint and Weisz coincide,
apart from one-loop counterterms. Thus, in one-loop calculations the slopes of our mass-
dependent matching factors must agree with them. Setting mq = 0, and using Eqs. (2.54){
(2.65),

@Z
[1]
Vk

@m1b
= 1

2
b
[1]
V ; (4.14)

@Z
[1]
V?

@m1b
= 1

2b
[1]
V �K

[1]
V ; (4.15)

@Z
[1]
Ak

@m1b
= 1

2
b
[1]
A �K

[1]
A ; (4.16)

@Z
[1]
A?

@m1b
= 1

2
b
[1]
A : (4.17)

To extract these slopes, we form a combination of integrands with three di�erent (small)

values of mba, yielding b
[1]
J and K [1]

J up to O(mba)2. In this way we �nd (for cSW = 1)

b
[1]
V = CF � 0:114929(10) = 0:153239(14) (4.18)

vs: CF � 0:11492(4) [46];

b
[1]
A = CF � 0:114142(10) = 0:152189(14) (4.19)

vs: CF � 0:11414(4) [46];

K
[1]
V = CF � 0:0122499(6) = 0:016332(7) (4.20)

vs: CF � 0:01225(1) [46];

K
[1]
A = CF � 0:0056806(11) = 0:0075741(15) (4.21)

vs: CF � 0:005680(2) [46];

which agrees perfectly with Ref. [46]. These results have also been checked by Taniguchi
and Ukawa [47]. We also obtain

b
[1]
V � b

[1]
A = CF � 0:0007833(11) = 0:0010444(16) (4.22)

by subtracting the integrands �rst, and then integrating. In taking the di�erence, large
contributions from the self energy cancel, but, even so, the near equality of b[1]V and b[1]A is a

bit astonishing. Comparing the slopes of Figs. 2(a) and 3(b) one sees that b
[1]
V � b

[1]
A for the

Wilson action is not so small.
Although these checks are reassuring, the main result of this section is to obtain the full

mass dependence of the matching factors. The results at intermediate mass, with m1a < 3
or, equivalently,m0a < 1:5, are needed for realistic calculations of B meson properties. This
region is neither particularly close to the massless limit, nor to the logarithmic behavior of
the static limit.
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B. BLM scales q�

It is well-known that perturbation theory in the bare coupling g20(1=a) converges poorly.
Therefore, we calculate the ingredients needed to determine the Brodsky-Lepage-Mackenzie
(BLM) scale [48,49]. For a coupling in scheme S, we denote the BLM expansion parame-
ter g2S(q

�
S). The BLM scale q�S is given by

ln(q�Sa)
2 = �b(1)S +

R
d4k ln(ka)2 f(ka)R

d4k f(ka)
; (4.23)

where k is the gluon momentum, and f(k) is the integrand of the quantity of interest, e.g.,R
d4k f(k) = Z

[1]
J . The constant b(1)S is the �0-dependent part of the one-loop conversion

from the arbitrary scheme S to the \V scheme", namely

(4�)2

g2S(q)
=

(4�)2

g2V (q)
+ �0b

(1)
S + b

(0)
S +O(g2); (4.24)

where for nf light quarks �0 = 11 � 2nf=3, and b
(0)
S is independent of nf . The V -scheme

coupling g2V (q) is de�ned so that the Fourier transform of the heavy-quark potential reads
V (q) = �CF g

2
V (q)=q

2. Equation (4.23) shows that the de�nitions of q� in Refs. [48] and [49]
are identical in the V scheme.

For our matching factors it is straightforward to weight the integrands with ln(ka)2 to
obtain

ln(q�V a)
2 =

�Z [1]

Z [1]
; (4.25)

because the integration over d4k has no divergences. The denominators are the one-loop
coeÆcients given above, and the numerators are presented now.

Figure 4 plots the full mass dependence of the numerators for the vector current, (a) �Z [1]
Vk
,

(b) �Z
[1]
V?
, (c) ��

[1]
Vk
, and (d) ��

[1]
V?
. As before, these numerical results are for the SW action with

rotation (solid lines) and also for the SW and Wilson actions without the rotation (dotted
lines). Figure 5 plots the full mass dependence of the numerator of Eq. (4.25) for the axial

vector current, (a) �Z
[1]
Ak
, (b) �Z

[1]
A?
, (c) ��

[1]
Ak
, and (d) ��

[1]
A?

. We have carried out several

checks on our calculations. Once again, identical numerical results have been obtained with
two or more completely independent programs. Also, at mba = 0 we reproduce the results,
for the Wilson action, of Ref. [44].

For �Z
[1]
J and ��

[1]
J the limit of large ma also has distinctive features. In that case

�Z
[1]
J =

CF

16�2

h
1
2h ln

2(m2a)
2 + 0h ln(m2a)

2 + �zJ
i
; (4.26)

where 0h is related to the two-loop anomalous dimension. A similar expression holds for
��

[1]
J , with a di�erent constant. Note that|in both cases|the one-loop anomalous dimension

appears multiplying ln2(m2a). The growth expected from Eq. (4.26) is seen in Figs. 4 and 5.
As a consequence, one �nds q�a / p

m2a as ma ! 1. Square root behavior is typical of
cases with an anomalous dimension.
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FIG. 4. Full mass dependence of the estimated �0g
4 terms of the matching factors of the vector

current (a) �Z
[1]
Vk
, (b) �Z

[1]
V?
, (c) ��

[1]
Vk
, and (d) ��

[1]
V?
.

For the Z factors, the resulting values for q�a are relatively constant in the \low mass"
region, q�a � 2:7{2.9. Figure 6 shows how q�a depends on the heavy quark mass in the
region m1a � 2, which is the one most relevant to calculations of decay constants and
form factors. At larger masses Z [1] goes through zero, at which point the original BLM
prescription breaks down. A prescription for q� in this case is given in Ref. [50]. For the

Wilson action the zero in Z
[1]
Vk

is at a smaller than usual mass [see Fig. 2(a)], which explains

its behavior for the BLM q�a seen in Fig. 6(a). For the � factors the denominator �[1] is
small over most of the interesting region, as seen in Figs. 2(c){(d) and 3(c){(d).

It is also interesting to see how q� changes under tadpole improvement. If one introduces
the tadpole-improved matching factors

~ZJ = ZJ=u0; (4.27)

where the mean link u0 is any tadpole-dominated short-distance quantity, the arguments of
Ref. [49] suggest that the perturbative series for ~ZJ has smaller coeÆcients. In analogy with
Eq. (4.1) we write

e� ~m
[0]
1 a=2 ~ZJ = 1 +

1X
l=1

g2l0
~Z
[l]
J ; (4.28)

where
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FIG. 5. Full mass dependence of the estimated �0g
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~m
[0]
1 a = ln[1 +m0a=u0] (4.29)

is the tadpole-improved rest mass. Then

~Z [1]
J = Z

[1]
J � 1

2

�
1 +

1

1 +m0a

�
u
[1]
0 ; (4.30)

and because Z [1]
J < 0 and u

[1]
0 < 0 one sees that the one-loop coeÆcients are reduced.

Similarly, for computing the BLM scale

� ~Z [1]
J = �Z

[1]
J � 1

2

�
1 +

1

1 +m0a

�
�u

[1]
0 : (4.31)

To illustrate, we take u0 from the average plaquette, so u
[1]
0 = �CF=16 and �u

[1]
0 =

�0:204049(1). Figure 7 shows that, as a rule, q� is signi�cantly reduced, which means
that tadpole improvement has removed some of the most ultraviolet contributions. With a
lower scale, the coupling g2V (q

�) becomes a bit larger with tadpole improvement. For ZVk

and ZA?, however, the denominator ~Z [1]
J already vanishes for m1a � 1:5{2.0, leading to

rapid growth in the BLM q� for the Wilson action, and a zero in the BLM q� for the SW
action. One should again de�ne q� in a more robust way [50]. Another choice for the mean
�eld is u0 = 8�crit. It gives coeÆcients and BLM scales that lie between the unimproved
and tadpole-improved cases [51].
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APPENDIX A: FEYNMAN RULES

The needed propagators and vertices for quark-gluon interactions are given in Ref. [31].
Here we give the additional Feynman rules induced by the rotation term of the heavy quark.
The additional rules are easy to derive by expressing the covariant di�erence operator as [54]

D�
lat = [T+� � T��] =(2a); (A1)

where

T�� = t��=2e
�g0aA�t��=2; (A2)

and t��=2 translates �elds to its right by one-half lattice spacing in the �� direction.
There are three rules to give, with 0, 1, and 2 gluons emerging from the vertex. Let the

Dirac matrix of the current be �. Then,

0-gluon = �

"
1 + id1

X
r

r sin(pr)

#
; (A3)

1-gluon = g0t
a d1 �i cos(p+

1
2
k)i; (A4)

2-gluon = ig20
1
2fta; tbgÆij d1 �i sin(p+ 1

2k +
1
2`)i; (A5)

where momentum p is quark momentum owing into vertex, and k and ` are gluon mo-
mentum owing into vertex. As in Ref. [31], the matrices ta are anti-Hermitian, i.e.,

U� = exp
�
g0t

aAa
�

�
,
P

aj t
a
ijt

a
jk = �CF Æik, and tr tatb = �1

2
Æab.

APPENDIX B: DIRAC ALGEBRA

To compute the vertex function, there are four diagrams to consider, depicted in Fig. 8:
the usual vertex diagram (with the rotation inside), Fig. 8(a); two diagrams with the gluon
connected to the incoming rotation, Fig. 8(b) and (c); and a tadpole diagram connected to
the incoming rotation [using rule (A5)], Fig. 8(d). The tadpole diagram, Fig. 8(d), vanishes
for zero external three-momentum, because ` = �k and pi = 0.

For each non-vanishing diagram, Figs. 8(a{c), de�ne the integral

I
(a,b,c)
� = �g20CF

Z
d4k

(2�)4
1

k̂2
I(a,b,c)� ; (B1)

(a) (b) (c) (d)
FIG. 8. Feynman diagrams for calculating the vertex function. The � on each side of the 


indicates the rotation.

27



J � s�
V4 4 �1

A4 45 +1

Vj j �
1
3

Aj j5 +1
3

TABLE I. The factor s�, de�ned by 1
3

P
r r�r = s��.

where k is the momentum of the gluon in the loop, and k̂� = 2 sin(1
2k�). Let the incoming

massive quark have couplings m0, rs, �, cB, and cE, and external momentum p. Similarly,
let the outgoing massless quark have couplings m00 = 0, r0s, �

0, c0B, and c0E, and external
momentum p0. The internal quark lines carry momentum p + k in and p0 + k out. The
integrals I are obtained directly from the loop diagrams. Then

Z
[1]
J =

1

2

�
Z
[1]
2h cont � Z

[1]
2h lat + Z

[1]
2l cont� Z

[1]
2l lat

�
+
X
d

�
Id�cont � Id�lat

�
; (B2)

from Eq. (4.1). The relation between the current J and its Dirac matrix � is contained in

Table I. The expression relating Z
[1]
2 lat to lattice self-energy functions is in Ref. [31].

The most onerous task in evaluating the diagrams is the manipulation of the Dirac
matrices. A convenient method is to treat each quark line separately, starting from the
initial- or �nal-state spinor. Then the spinor, the propagator, and the vertices can be
written out in 2� 2 block diagonal form, with Pauli matrices appearing in the blocks. Once
the Feynman rules are as complicated as in the present calculation, it is easier to manipulate
2� 2 matrices of Pauli matrices than to manipulate Dirac matrices. A special advantage of
this organization is that the rotation bracket in Eq. (A3) merely \rotates" the rest of the

leg. We also obtain Z [1]
2 lat in this way, with much less e�ort than in Ref. [31].

A further advantage is that the vertex corrections can be expressed compactly. The
diagram with a gluon going from the incoming leg to the rotation, Fig. 8(b), is

I(b)� = d1
�

D

"
(3� 1

4 k̂
2
)L + 1

2�
X
r

KrS
2
r

#
; (B3)

where Sr = sin kr, and the functions D, L, and Kr are given in Appendix C. The diagram
with a gluon going from the outgoing leg to the rotation, Fig. 8(c), is

I(c)� = s�d1
� 0

D0

"
(3� 1

4
k̂
2
)
(-)
L 0 + 1

2
� 0
X
r

K 0rS
2
r

#
; (B4)

where the functions D0,
(-)
L 0, and K 0r are given in Appendix C, and s� is given in Table I.

The unbarred function L (barred function �L) is for � = 4 and j5 (� = j and 45).

The vertex diagram, Fig. 8(a), is complicated. We �nd I(a)� = N
(a)
� =DD0, with numerator

N
(a)
� = (�)

�(-)
U 00R[U0]� s�

(-)
L 00R[L0]S

2
�
� �� 0X�: (B5)

The upper sign and unbarred functions (lower sign and barred functions) are for � = 4 and
j5 (� = j and 45). The part X� comes from spatial gluon exchange:
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X� = �s�(3 � 1
4
k̂
2
)
(-)
L 0R[L] + s2�(3 � 1

4
k̂
2
)
(-)
V 0R[V ]S2

+1
2

�(-)
V 0R[U ]� s�

(-)
L 0R[�]

�X
r

KrS
2
r

+1
2

�(-)
U 0R[V ]� s��

0R[L]
�X

r

K 0rS
2
r (B6)

+1
4

�(-)
U 0R[U ]� s�S

2� 0R[�]
�X

r

K 0rKrk̂
2
r

+1
8
(1 � s2�)

 
k̂
2
S2 � 3

X
r

k̂2rS
2
r

!
(-)
V 0R[V ];

where the last term is absent for V4 and A4 (i.e., when s2� = 1). The rotation enters in the
\rotated" functions

R[U0] = U0 + d1S
2L0; (B7)

R[L0] = L0 � d1U0; (B8)

R[U ] = U + d1S
2�; (B9)

R[�] = � � d1U; (B10)

R[V ] = V + d1L; (B11)

R[L] = L� d1S
2V: (B12)

Although the vertex diagram is not easy to write down, the rotation modi�es it in a fairly
simple way, when using the 2 � 2 Pauli matrix method described above.

We have veri�ed that these expressions are correct by completely independent calculation
with more common methods for the Dirac algebra.

APPENDIX C: USEFUL FUNCTIONS

In this appendix we list the functions appearing in Appendix B for the action and currents
given in Sec. III. First, let

� = 1 +m0 +
1
2rs�k̂

2
; (C1)

�0 = 1 +m00 +
1
2r
0
s�
0k̂

2
: (C2)

from now on a prime means to replace incoming couplings and momenta with corresponding
outgoing couplings and momenta.

When the quark propagator is rationalized it has the denominator

D = 1� 2� cos(k4 + im
[0]
1 ) + �2 + �2S2; (C3)

where m[0]
1 = ln(1 +m0).

In this calculation, the heavy quark has zero three-momentum, so its spinor consists only
of upper components. Depending on the matrix � the heavy quark couples either to the
upper or lower components of the light quark. With the upper components the unbarred
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functions arise, and with the lower components (of the light quark) the barred functions
arise.

To express the useful functions compactly, it is convenient to introduce �rst

U = � � e�m
[0]
1 +ik4 ; (C4)

�U = � � e+m
[0]
1 �ik4 ; (C5)

because these combinations appear in the other functions. Then

U0 = Ue+m
[0]
1 �ik4=2 � 1

2
�2cE cos(

1
2
k4)S

2; (C6)

L0 = �
�
e+m

[0]
1 �ik4=2 + 1

2cE cos(
1
2k4)

�U
�
; (C7)

V = �
h
1 + i

2
cE sin(k4)

i
+ 1

2
cBU; (C8)

L = � �U
h
1 + i

2cE sin(k4)
i
+ 1

2cB�S
2; (C9)

Kr = rs � cB cos
2(1

2
kr) = (rs � cB) +

1
4
cBk̂

2
r ; (C10)

and

�U0 = �Ue�m
[0]
1 +ik4=2 � 1

2
�2cE cos(

1
2
k4)S

2; (C11)

�L0 = �
�
e�m

[0]
1 +ik4=2 + 1

2
cE cos(

1
2
k4)U

�
; (C12)

�V = �
h
1 � i

2cE sin(k4)
i
+ 1

2cB
�U; (C13)

�L = �U
h
1 � i

2
cE sin(k4)

i
+ 1

2
cB�S

2: (C14)

The barred functions are obtained from unbarred counterparts by putting k ! �k and
m

[0]
1 ! �m[0]

1 , so there is no need to introduce �Kr = Kr. In the present calculation the
barred functions arise only for the outgoing massless quark, for which m00 = m01

[0] = 0.
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